Krylov Subspaces Associated with Higher-Order Linear Dynamical Systems
نویسندگان
چکیده
منابع مشابه
Krylov Subspaces Associated with Higher-order Linear Dynamical Systems
A standard approach to model reduction of large-scale higher-order linear dynamical systems is to rewrite the system as an equivalent first-order system and then employ Krylov-subspace techniques for model reduction of first-order systems. This paper presents some results about the structure of the block-Krylov subspaces induced by the matrices of such equivalent first-order formulations of hig...
متن کاملMoment Matching Theorems for Dimension Reduction of Higher-Order Dynamical Systems via Higher-Order Krylov Subspaces
Moment matching theorems for Krylov subspace based model reduction of higherorder linear dynamical systems are presented in the context of higher-order Krylov subspaces. We introduce the definition of a nth-order Krylov subspace Kn k ({Ai} n i=1;u) based on a sequence of n square matrices {Ai}i=1 and vector u. This subspace is a generalization of Krylov subspaces for higher-order systems, incor...
متن کاملReduction of Second Order Systems Using Second Order Krylov Subspaces
By introducing the second order Krylov subspace, a method for the reduction of second order systems is proposed leading to a reduced system of the same structure. This generalization of Krylov subspace involves two matrices and some starting vectors and the reduced order model is found by applying a projection directly to the second order model without any conversion to state space. A numerical...
متن کاملAdaptive rational Krylov subspaces for large-scale dynamical systems
The rational Krylov space is recognized as a powerful tool within Model Order Reduction techniques for linear dynamical systems. However, its success has been hindered by the lack of a parameter-free procedure, which would effectively generate the sequence of shifts used to build the space. In this talk we propose an adaptive computation of these shifts. The whole procedure only requires to inj...
متن کاملRecycling Krylov Subspaces for Sequences of Linear Systems
Many problems in engineering and physics require the solution of a large sequence of linear systems. We can reduce the cost of solving subsequent systems in the sequence by recycling information from previous systems. We consider two di erent approaches. For several model problems, we demonstrate that we can reduce the iteration count required to solve a linear system by a factor of two. We con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BIT Numerical Mathematics
سال: 2005
ISSN: 0006-3835,1572-9125
DOI: 10.1007/s10543-005-0011-6